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The supermolecular structures formed in a block copolymer-solvent system were considered by using the 
scaling method. The equilibrium characteristics of the superstructures of different morphologies formed by 
two-block copolymers with non-crystallizable blocks were determined as a function of the molecular weight 
and composition of copolymer and the strength and concentration of the solvent in the system. The 
composition-concentration diagram of the system was obtained. The lamellar superstructure formed by a 
block copolymer with one crystallizable block was analysed. The results of the theory were compared with 
the experimental data. 
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I N T R O D U C T I O N  

In a preceding paper 1 it has been shown that the block 
copolymer micelles in a selective solvent remain segre- 
gated without interpenetrating up to limiting high 
concentrations of block copolymer. This behaviour leads 
to regular micelle packing and the formation of a super- 
structure with well developed long-range order, which 
may be regarded as liquid-crystalline structure. 

In contrast to the situation in a dilute solution in which 
micelles are of spherical shape, the morphology of the 
superstructure formed at high block copolymer concen- 
tration is determined by the composition of the block 
copolymer, its concentration and the degree of solvent 
selectivity. Thus, at approximately equal lengths of A 
and B blocks in a two-block copolymer (q = N A / N  a "~ 1), 
planar lamellae are formed (i = 1), and at a considerable 
difference between block lengths q>> 1 spheres of the 
minor component B (i= 3) are formed. They are located 
at the nodes of the cubic lattice and surrounded with the 
matrix of the predominant component A. In the inter- 
mediate case of moderate q, the minor component B is 
concentrated in cylinders (i= 2) hexagonally packed in 
the matrix A (Figure 1). 

In this paper the scaling analysis of the previous paper 1 
is continued by considering the free energy, the stability 
and geometric characteristics of superstructures with 
different morphologies (i = 1-3) in relation to molecular 
parameters and to solvent concentration. 

As before, a two-block copolymer, ANABNB, will be 
considered. All the symbols used have been defined in 
ref. 1. We will assume that the polymer concentration 
CA and Ca (or solvent concentration 1 -  CA and 1 --Ca) 
in the corresponding elements of the superstructures are 
fixed. At C A = C a = 1, the relationships obtained describe 
the superstructure in the absence of the solvent. 
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Some results of t h i s w o r k  have already been 
published 2-4. 

THEORY 

Let us consider the conformational free energy AF of a 
chain of a block copolymer in a superstructure of type i. 
As before, we will restrict ourselves to the main power 
term in each of the components of AF (equation (1.1), 
i.e. equation (1) in ref. 1) but retain the numerical 
coefficients omitted in the previous paper: 

AF = AF A + AFB + AFs (1) 

As before, the interface free energy AF s is determined 
by equation (1.2): 

AF s = ~a  = (oa/a 2 (2) 

where a is interface area per chain and qS= dp/a 2 is the 
coefficient of corresponding surface tension. 

As to conformational free energies AFA and AFB of 
the blocks A and B in the corresponding structural 
elements, these blocks may be treated as chains of blobs, 
grafted to the interface. As usual in semidilute solution 
the blob size is ~i ~- aC ~ ~/~3v-1)~, the number of blobs is 
nj=NjC )/(3v-I), v=21 or 3, j = A  or B. 

Taking into account the stretching of blocks B in a 
domain of size Ri, we obtain: 

AF~,el = CtiR2 / ¢Enn (3) 

where ~ are numerical coefficients of the order of unity. 
In the calculation of AFt,el, the non-uniformity of 

stretching of grafted chains for spherical ( i=3)  and 
cylindrical (i = 2) morphologies will be taken into account. 
By using equation (1.20) for the free energy of stretching 
of part of a chain of 6n blobs in a layer of thickness 6r 
at a distance r from the domain centre and the condition 
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Figure 1 Superstructures consisting of block copolymers 

of dense packing of blobs: 

6 n ~  ~- ~rtTi(r/Ri) i- 1 

we obtain: 

. ~g R2 ( I  -- [RJ(R~+D,)] '-2 
AFiA'~'=PI ~Bn a ~ln(1 + DI/Ri) 

i:/:2 
(4) 

i = 2  

Here D~ is the characteristic size of the matrix formed by 
blocks A around a given domain B: 

D~ = R,[(1 + qC,/CA) 1/'- 1] (5) 

fli are numerical coefficients of the order of unity and 
q= NA/N B. Applying equation (5) we have: 

AFiA,el=fli R2 C(2v_l,/(3v_e,(CB) v/(3v-1) 
a ~ NB \ ~  1 

x ~1 - (1 +qCB/CA) (2-1)/i i # 2  

(ln(1 +qCs/CA) i=2  (6) 

The concentration components AF} .. . . .  m NjC)/(3v-1)are 
independent of the morphology and parameters of the 
structure and hence do not participate in minimization. 

The minimization of AU taking into account equations 
(1)-(3) and (6) yields equilibrium values of the domain 
size Ri and the conformational free energy of the chain 
AU in the structure of i type. At fixed values of CA and 
C,  we have: 

Ri = a(iq6/2)x/3C~2 - 5v)/3(3v- 1)N2/3Q~- 1/3 (7) 

AFi= 3(i(9/2)2/3C(B1-4v)/3(3v- 1)N~/3Q~/3 (8) 

where 

R(Ca~V/(3v-1):l--(1-k-qCB/CA)(2-i)/i / # 2  

Q~ = ~' + "' \CAJ-- (ln(1 +qCB/CA) i = 2  

(9) 

The values of numerical coefficients e~ and fli have been 
calculated in ref. 5. 

Equations (7)-(9) are the complete solution of the 
problem. In particular, they determine the molecular- 
weight, concentration and composition dependences of 
the parameters of the superstructure of morphology i. 

Let us analyse in greater detail the results and compare 
them with both other available theoretical investigations 
and the extensive experimental data accumulated in the 
literature. 

RESULTS AND DISCUSSION 

Molecular-weight dependence 
It can be seen from equations (7)-(9) that at a fixed 

composition of the copolymer q=  NA/NB--Const for a 
linear size of superstructure of any morphology (domain 
radius, lamella thickness and complete period), a single 
law should be obeyed: 

Ri ~ N2/3 (10) 

D i ~ N  2!3 

at an arbitrary fixed polymer concentration in the system 
including the melt. 

Also we have for specific surface area ai and the 
conformational free energy AFi: 

AFi"~ai~ N 1/3 (11) 

The analysis carried out in ref. 2 for lamellar structures 
has shown that equations (10) and (11) should also be 
approximately obeyed at a variable q, which is due to 
relatively slight variations of composition in the range 
of stability of lamellar structures. The same is also true 
for i = 2, 3, because of the weaker dependence of R~ on q 
(equations (7) and (9)). 

The law in equation (10) is close to that obtained 
previously by Helfand 6 for lamellar superstructure on 
the basis of mean-field considerations: at N-~ ~ ,  R I ~  
D I ~ N  v' where v '=9/14=0.64.  For i>1 ,  Helfand's 
theory 7 does not give single-power asymptotes, and the 
exponent v' is a function of composition q; but the 
quantitative differences are slight. 

A systematic experimental investigation of the mol- 
ecular-weight dependence of the size of superstructures 
was carried out for melts of copolymers at CA = CR = 1. 
Numerous data for lamellar structures summed up in 
refs. 8 and 9 show that the exponent v' is close to 2/3. 
The value of v '= 2/3 has also been confirmed in a special 
investigation of the exponent for narrow-disperse poly- 
styrene-polyisoprene (PS-PI) polymers, 2 × 104 < M < 
2 × 105 (ref. 8). For polydisperse samples, the dependences 
in equation (10) were also obeyed when Mn was used as 
the parameter 1°. 

An example of the dependence with v'=2/'3 plotted 
from the experimental data in ref. 10 is shown in Figure 2. 

For superstructures with other morphologies, the 
experimental results are less definite. Thus, the experi- 
mental data of several authors summarized in ref. 11 and 
the data in ref. 12 are characterized by considerable 
scattering, which prevents reliable determination of the 
exponents in the molecular-weight dependence of the 
parameters. However, the analysis of experimental data 
in refs. 11 and 13 for spherical domains formed by block 
PS-PI copolymers, 7 × 1 0 4 < M < 7  × 105, of the highest 
molecular weight among the samples investigated in the 
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Figure 2 Molecular-weight dependence of the size of the lamellar 
structure~° 

used for three-block copolymers instead of M for 
two-block copolymers, in agreement with equation (12). 

It is also of interest to consider the change in the 
parameters of the superstructure when the third block is 
bonded to a two-block ANABNB copolymer, i.e. on passing 
to ANABNBANA. In this case the composition of the 
copolymer changes, q(2) = NA/NR, q(3) = 2NA/N B = 2q(2), 
and the total molecular weights are M(2)=MA+MB, 
M(3) = 2M A + M B. Taking into account the structural 
equivalence of the three-block copolymer and the two- 
block copolymer with molecular weight M(3)/2 we have 
for lamellar structures (i = 1): 

R,(3)_ 1 (2 + 2q(2)'] '/3 

R~(2) 2 \ i+~q (2 ) /  

D,(3) (2+2q(2)'~ '/3 
D,(2) = \ 1 + 2 q ~ /  (13) 

¢c~ 2"~ 

o 

2.0 o J 
I I 

4.0 4.5 5.0 
tg M. 

Figure 3 Molecular-weight dependence of the size of spherical 
domains R 311 

literature, have shown that the law v'= 2/3 is adequately 
obeyed (Figure 3). 

Superstructures of three-block copolymers 
So far we have considered only two-block ANABNB 

copolymers. However, the analysis may be extended to 
symmetrical three-block copolymers of ABA (or BAB) 
type. The simplest assumption is that in the formation 
of the superstructure the chains are folded in such a 
manner that the molecule of a three-block copolymer of 
molecular weight M may be regarded as two molecules 
of a two-block copolymer with molecular weight M/2. 
Hence, for AB and ABA copolymers with a fixed 
composition we have: 

Ri(3; M ) =  Ri(2; M/2) (12) 

D,(3; M)= D,(2; M/2) 

where numbers 2 and 3 denote the block number in the 
copolymer. 

It can be seen from Figure 4 that the geometric 
characteristics of the superstructure of three-block poly- 
styrene/polybutadiene PS-PB-PS and PB-PS-PB co- 
polymers ~4 fall on the same straight line as those of 
two-block PS-PB copolymers. The coordinate M/2 is 

HI(3)_R~(3)+Da(3) (~ + 2q(2)'~ 2/3 

H1(2) R,(2)+D,(2) = ~ , /  

These results may be compared with the experimental 
data in ref. 15. According to experimental data, when a 
third PB block (M=2.5 x 104) was added to the two- 
block PS(M = 3.8 x 104)-PB(M =2.5 x 104) copolymer, 
the thickness of the PB lamella formed by PB-PS-PB 
copolymer increased by a factor of 1.25 with simultaneous 
decrease in the thickness of the PS lamella and the period 
on the whole (to 0.60 and 0.88 of the initial values, 
respectively). The calculation according to equation (13) 
gives D 1 (3)/19 x (2) = 1.10, R 1(3)/R 1 (2) = 0.55, H t (3)/Hx (2) = 
0.80, in good quantitative agreement with experimental 
data. 

Concentration dependence of the parameters 
of superstructures 

Equations (5), (7) and (9) determine the dependence 
of R i and D i on volume fractions of the solvent (1 - Cj) 
( j=A,  B) in a structure of given morphology. It is clear 
that geometrical parameters depend on Cj both directly 
and via the surface tension coefficient ~b--q~(CA, Ca). 
Hence, it is necessary to begin from the analysis of the 
concentration dependence of qS(C A, Ca). 

,g 

o 
~t 
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M x  I O - a ;  M I 2 x  I0 -~ 

Figure 4 Molecular-weight dependence of the lamella period consisting 
of two- and three-block copolymers 14 
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Surface tension coefficient. Let us begin from the case 
of a non-selective solvent when CA = CB. 

The maximum surface tension at the boundary of two 
structural elements containing A and B blocks (and 
solvent) takes place when polymers A and B are 
incompatible and the excessive interaction constant ZAB 
is very high. In the limit gAB>> 1, the interfacial layer 
between two semidilute solutions becomes limitingly thin 
(A~0)  and surface tension reduces to the sum of surface 
tensions of each solution near an impermeable wall: 

= ~A ~- q~B (l 4) 

The problem of a polymer solution near an imperme- 
able wall has been solved x6 on the basis of simple 
scaling relationships, and the main results will be briefly 
considered here. 

The effective repulsion of chain units by a wall leads 
to a decrease in their concentration Cs at the walt. This 
concentration may be determined from the condition of 
the equality of osmotic pressure at the wall n x ~ Cs~ , and 
in the bulk of solution nx~  C "x where ~ = 9 / 4 ,  2 and 3 
depending on the thermodynamic regime ( x = I I + ,  lImf 
and II0) of the semidilute solution: 

C~x~-C ~ (15) 

The thickness of the depletion layer should be of the 
order of magnitude of the correlation radius ~ so that 
the concentration profile near the wall may be written 
in the scaling form: 

C(z )={C(z /~ jPx=C~xz~  z<<~ (16) 

Z >> ~x 

By using equations (15) and (16) and applying the 
values of ~x and the concentration dependence of ex we 
find fix=5/3, 2 and 2 for regimes II+, IImf and II 0, 
respectively. 

A more detailed picture of the concentration profile 
near the wall may be obtained by using the self-consistent 
field method valid under regimes IImf and II 0. The 
calculation gives: 

C ( z ) = C  tanh2 ( i )  v + 

where 

v + 2wC 

3 w C -  wC tanhZ(z/~) 
(17) 

= a/F6(vC + 3wC2)] x/z (18) 

a n d  va3~-za 3 and wa 6 a r e  the second and third virial 
coefficients of unit interaction. At z/~ << 1, the expansion 
of equation (17) into a series leads to power relationships 
of equations (15) and (16) for regimes l ime ( v > > w C )  and 
II 0 (v<<wC). 

The surface tension coefficient q5 is determined by the 
density of free energy of volume interactions n x '-  Csx and 
the width of the depletion region ~x: 

(D1/2C3/2 X = + , m e  (19) 
~)"~--lrx~xa2"~wl/2C2 x = O  

With decreasing ZAB, the thickness A of the interface 
layer containing units of both types increases and the 
surface tension at the boundary of different elements 
decreases (Figure 5). It is possible to evaluate A on the 
basis of simple considerations by using the mean-field 
approximation (regimes IImf and II0). It is known 
that according to the Flory-Huggins theory the phase 

q,c,  

I A I 
x 

Figure 5 Scheme of the density profile of A and B units in the 
interdomain layer 

separation of a mixture of two polymers A and B in a 
common good solvent obeys the condition: 

CcZABn = 2 (20) 

where Cc is the critical concentration of polymers and n 
is the degree of polymerization. It is natural to assume 
that the value of n also determines the successive number 
of units of any chain that may be located in a 'foreign' 
phase in the interface layer. Then its thickness is given by: 

A,.~anUZ~a(CZAB) 1/2 (21)  

in agreement with more detailed evaluations 17. 
The formation of an interface layer leads to additional 

energetically unfavourable hetero-interactions, the energy 
of which in the mean-field approximation may be given 
by: 

AFAB --~ ZAa(6N)Za/A (22) 

where 6N = 6N A = 6N B are the numbers of units of A and 
B type located in the interface layer (per unit area). 

Assuming that the decrease in concentrations in the 
interface layer is described by the first of equations (16) 
we obtain: 

AFAB---- XAB C2 (23) 
a 

This value is positive but the increase in the entropy of 
the system with the thickening of the interface layer leads 
to an overall decrease in the free energy. Under the 
equilibrium conditions both energetic and entropic terms 
are of the same order of magnitude. Hence, the value of 
AFAB is the measure of the overall free energy decrease. 
The surface tension at the boundary of partially inter- 
penetrating A and B solutions may be written in the form: 

~b "~ 7z~a 2 - -  a ZAB C2 (24)  
a 

At weak penetration, when A<< ~ (Figure 5), the addend 
in equation (24) may be neglected so that the concentration 
dependence of surface tension is still described by 
equation (19). In the other limiting case when the 
concentrations of each component at the corresponding 
boundaries of the interface layer attain limiting values 
CA = Ca= C, equation (24) becomes incorrect, and the 
surface tension coefficient is given by17: 

~9 = (ZAB/6 )I /2 C 3/2 (25) 

So far the limiting non-selective solvent was considered 
when CA = Cs = C. In the case of a highly selective solvent, 

POLYMER, 1990, Vol31, July 1315 



Scaling of supermolecular structures in block copolymer-solvent systems. 2: T. 114. Birshtein and E. B. Zhulina 

when Ca= 1 and CA< 1, the main contribution to the 
concentration dependence of surface tension is provided 
by the change in the degree of contact of the solvent with 
the surface of the B structural element. Hence, the change 
in 49 with concentration is not described by a power 
function so that in the scaling approximation this 
function may be regarded as a constant. 

Selective solvent. Let the solvent exhibit high selectivity 
and be completely concentrated either in the matrix A 
(C A = C, CB = 1) or in the domain B (CB = C, C A = 1). It 
follows from equations (5), (7) and (9) that at 49 = const (C) 
in both cases the swelling of the swelling block (decrease 
in C) should lead to an increase in both its thickness and 
the specific interface area a but to a corresponding 
decrease in the thickness of the insoluble component. 
This conclusion is valid for all the range of qCB/CA values. 
It should be emphasized that the increase in a is related 
to an increase in mutual repulsion of the chains in the 
swelling component with increasing swelling. This auto- 
matically leads to a decrease in the thickness of the 
structural element of the insoluble component (as a result 
of the retention of its volume), although it is not directly 
affected by swelling. For the particular case of insoluble 
spherical domains in a swelling matrix (i= 3, Ca= 1, 
CA<l ,  qCB/CA>>I), this effect has been considered in 
ref. 1 (concentration range C A > C**). Equations (5), (7) 
and (9) at i=  3 and qCa/CA>> 1 give for this case: 

R3 ,~ a491/3 N2/3 CVA/3(3v- 1) 
(26) 

D ,,~ ~ , . h l /3  A r l / 3  ~ , ra /3 t  ~ -  (1 - 2 v ) / 3 ( 3 v -  1) 
3 - - t ~ w '  ~ ' A  ~VB ~'-~A 

in complete agreement with the results in ref. 1. 
The conclusions that selective swelling of the elements 

of the superstructure of any morphology should lead 
to (1) an increase in the dimensions of the soluble 
component, (2) an increase in the specific area of grafting 
and (3) a decrease in the dimensions of the insoluble 
component, are in complete agreement with a large 
number of experimental data 9 in which these effects are 
manifested. 

In the case of spherical morphology (i = 3), the decrease 
in the size of the unswelling domain due to matrix swelling 
requires considerable rearrangement: decrease in the 
number of chains in the spherical domain (and the 
increase in the number of domains). For superstructures 
of other morphologies, these rearrangements are not so 
extensive: decrease in the thickness of the insoluble 
structural element is accompanied by its stretching in the 
perpendicular direction and may occur without chain 
redistribution between insoluble elements. 

It is noteworthy that relatively strong effects, namely 
the increase in the size of the swelling structural elements 
and the thinning of the undiluted elements, are described 
by the theory even if the concentration dependence of 
the interface tension coefficient 49 is neglected. A finer 
effect is the concentration dependence of the overall 
period of the structure, because one of the values 
decreases and the other increases. For lamellar structures 
the contributions of both values are close to each other. 
Hence (mainly for lamellar structures), even the sign of 
the concentration dependence of the overall period 
cannot be obtained theoretically without taking into 
account the dependence 49=49(C), although it is not a 
power dependence for a selective solvent. Good agreement 
with experimental data 9 according to which the period 

of lamellar structures always decreases with the swelling 
of elements of one type in a selective solvent (increase in 
I--CA) may be obtained with the assumption of a 
decrease in the coeffÉcient 49 at this swelling. 

Non-selective solvent C,~=Ca=C.  As follows from 
equation (9), in the case of a completely non-selective 
solvent CA = CB = C, the value of Q~ no longer depends 
on concentration C, and equations (7)-(9) give: 

Ri "~ Di "~ 491/3C - (5v-  2 ) / 3 ( 3 v -  1) (27) 

tri,,~aNa 49-1/3C-(4.v-1)/at3v-1 ) 
a2-  CR i 

It can be seen from equation (27) that with increasing 
swelling of the system (decrease in C) the specific area a~ 
increases regardless of the morphology of the system. In 
this case taking into account the power concentration 
dependence 49(C), a decrease in the superstructure 
parameters Ri and D~ is obtained. According to equations 
(19) and (24), the resulting values of the exponent ~ in 
the dependence Ri,,~ C c~ are a = 1/12, 1/6 and 1/3 under 
regimes II+, Ilmf and II 0, respectively. (It should be 
noted that the value of 0~mf = 1/6 was obtained at v = 1/2 
in equation (27) since in the mean-field region of a 
good solvent, Ilmf, the chain size coincides with the 0 
dimensions.) 

All the experimental data available in the literature on 
systems containing a non-selective solvent show that the 
specific area tr is actually an increasing function of the 
degree of swelling of the block copolymer. 

The concentration dependences of dimensions R i and 
D i of superstructures are found to be less definite. On 
the one hand, the study is of lamellar structures (i= 1) 
formed by a two-block copolymer PS-PI (MA=MB= 
4.7 x 1 0  4 )  in toluene (non-selective solvent for PS and 
PI) in the range of volume fractions of the polymer 
0 .2<C<0 .7  showed that the thickness of A and B 
lamellae R1 and D 1 and the overall period H 1 decrease 
with swelling. Moreover, this decrease is described by 
the power dependence H 1 ~C"  where ~=  + 1/3. This 
value is in complete agreement with the above evaluation 
for regime II 0. The values of the polymer-solvent 
interaction parameters XAS = 0.44 and ZBS = 0.4 for PS and 
PI units respectively, reported in ref. 18, indicate that the 
conditions for both blocks are close to 0 conditions. 

However, at high concentrations of the block co- 
polymer, C > 0.6-0.7, in ref. 18 and in a number of other 
papers 9 the increase in dimensions R 1 and D 1 with 
swelling has been established. The authors of ref. 1 8 relate 
this effect to incomplete equilibrium in the system at high 
concentrations. 

Morphology of block copolymers: 
composition-concentration diagram 

It follows from equations (8) and (9) that the confor- 
mational free energy of the chain in a structure of type 
i depends on the composition of the copolymer q = NA/Na 
and the relative content of the solvent CA~Ca (the function 
Qi depends on these parameters). 

Since the molecular-weight dependence of A U ~ N  1/3 
is identical for all morphologies (i= 1, 2 and 3), the 
comparison of AU values requires knowledge of numerical 
coefficients ~ and fl~ in equation (9). These coefficients 
have been found by Semenov 5 for the case of super- 
structures in the melt (CA = Ca---- 1). When these data are 
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applied, the functions become: 

"~2 r .{CB'~ v/(3v-1) Ca  7 

 L Ttc,,) q 

~z+3(CB~/ (3~- ' ) ln ( l_kqCa ) 
Qi= 16 8\CAJ CA 

37~2-t-~(CB'~Vl(3v-1)[1-(l-Ji-qCc:)-l13180 2 \ C A / ]  

i=1 

i = 2  

i=3  

(28) 

Figure 6 shows the diagram of morphology of super- 
structures constructed according to equations (8) and 
(28). The diagram of states contains five regions. Regions 
I, II and III in Figure 6 correspond to lamellae, cylinders 
and spheres formed by the component B of the copolymer. 
Regions II' and III' correspond to inverted cylinders and 
spheres when the component A forms the domains and 
the component B forms the matrix. The conformational 
free energy (AU)' of inverted structures is obtained 
directly from equations (8) and (28) by exchanging 
CA ~ Ca and N A ~ NB. The boundaries between the 
regions are determined from the condition: 

AF i = AF i + 1 
(29) 

(AFi), = (AFi+ 1), 

(shaded values refer to inverted systems). 
The case of the completely non-selective solvent 

CB=CA=C (CB/CA = 1) including its absence C =  1 is 
shown by a broken line in Figure 6. In this case the 
morphology of the system is determined only by the 
composition of the block copolymer. Thus, at q~- x < q < qc 
lamellae are formed; at qc<q<qs and q~- l<q<q~l  
cylinders are formed; and at q > qs and q < q~-~ spheres 
appear. The numerical values of q¢~2.6 and q ~ 7  
coincide with the results in ref. 5 obtained for super- 
structures in the melt. Hence the change in C due to 
non-selective swelling at a fixed q cannot lead to a change 
in the morphology of the structure. 

In the case of a selective solvent, Cn/C A =/: 1, the unequal 
swelling of the components (change in Ca/C A with 
increasing swelling of the system) leads to the possibility 
of a change in the supermolecular structure. The swelling 
of the matrix (increase in Ca~CA) leads to the narrowing 

I i 
O 4 8 

N, / N B 
Figure 6 Concentration composition diagram of superstructures con- 
sisting of two-block copolymers 
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Figure 7 Cylinder-]amelia concentration transition J9 
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q 

of regions I and II, whereas that of the domain (decrease 
in Ca~CA) results in the broadening of these regions. 
Therefore transitions I --, II ~ III, i.e. lamella ~ cylinder 
sphere, are possible due to the matrix swelling and 
transitions III -~ II --, I, i.e. sphere --, cylinder ~lamella, 
are possible due to the swelling of the domains. 

It follows from equations (8) and (29) that when the 
boundaries of the regions of the diagram are intersected, 
i.e. when the morphology of the superstructure changes, 
the specific area remains continuous: 

0"i = O'i + 1 (30) 

which automatically leads to a jump in the size of the 
domain with a change in morphology: 

Ri+ 1 = RI i+ 1)/i (31 ) 

The validity of equations (30) and (31 ) is independent 
of the details of calculation of free energies of blocks AF~ 
and AF~ and of the block number (they are also valid 
for three-block copolymers ABA or BAB) and is a direct 
consequence of the initial assumptions 1 : the equilibrium 
character of the supermolecular structure and the small 
thickness of the interface layer as compared to the size 
of structural elements (A<<Ri, Di). It is the small value 
of A that makes it possible to consider the free energy of 
the system as the sum of contributions of AFA, AFB and 
AFs (see ref. 1 for further details). 

The existence of concentration transitions leading to 
a change in the morphology of the superstructure has 
been reported by a number of authors x9'2°. Figure 7 
shows the lamella-cylinder concentration transition 
observed in ref. 19 in a structure formed by a three-block 
polyisoprene-polymethylstyrene-polyisoprene (ABA) co- 
polymer with a fixed composition (MA:MB=63:37) in 
decalin (preferential solvent for the A block). The change 
in the morphology of the structure took place at a weight 
concentration of the copolymer C* = 50-52%. Unfortu- 
nately, it is not possible to give the theoretical evaluation 
of C* from the theory of two-block copolymers developed 
here because the position of the transition is determined 
by the coefficients ~i, fl~ in Qg depending on the block 
number. A primitive reduction of a three-block copolymer 
to the two-block copolymer with the same composition 
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(for the sample investigated in ref. 19, q ~ 2) gives C* ~ 0.8 
(diagram in Figure 6). 

It is possible, however, to compare with the theory 
other characteristics of the transition: the value of the 
jump in domain size and the slope of concentration 
dependence near the transition point. It can be seen from 
Figure 7 that at the transition point the specific area per 
chain remains continuous o" 1 =o" 2 and the domain size 
undergoes a jump the value of which (R2/R1) is close 
to 2, in complete agreement with equation (31) at i= 1. 
The slope of concentration dependences a~(C) near C* 
decreases at the lamella-cylinder transition, which is also 
in agreement with the theory. 

Lamellar superstructure: block copolymer with 
one crystallizable block 

The equilibrium characteristics of superstructures 
formed by two-block (and three-block) copolymers with 
non-crystallizable blocks have been obtained above. Here 
the lamellar structure formed by the copolymer with one 
block that can undergo crystallization will be considered 
(Figure 8). The crystalline layers in this structure are 
formed by folded chains B. The number of folds n¢ per 
block and the specific interface, t71a 2= n e + 1, are deter- 
mined by the conditions of dense packing C B = 1 : 

a Naa 
aT = n¢ + 1 - (32) 

Rt 

The amorphous block A can undergo swelling in a 
solvent C A ~ 1. As before, the conformational free energy 
of the system is described by equation (1) and the free 
energy of block A and the interface free energy are 
described by equations (2) and (4). However, since the 
crystalline block B does not contribute to elastic stretching, 
equation (3) is replaced by: 

AFB=elNR+n¢(e2-e t )=e lN  B x 6en¢ (33) 

where e 1 is the energy of a unit in the crystalline state 
and fe is the excess energy at a kink in fold formation. 

In other words, only two addends, AF A and AF, are 
retained in equation (1). Moreover, it follows from 
equations (32) and (33) that the value of 4) in equation 
(2) is replaced by ~b'= 4~ + 6e. 

As a result of the minimization of AF we obtain: 
t 1/3 

.//4q5..) ~' N-1/3C('V-1)/3(3v-1) (34) 
Rl=",n~,\ / "'B A A 

Figure $ Scheme of a lamella formed by a block copolymer with one 
crystallizable block 

c f 
2O 2 

i i i 
5 5 I0 2~) '" 

MAx io-3 

Figure 9 Molecular-weight dependence of the number  of folds in a 
lamella in the absence (1) and the presence (2) of the solvent in the 
amorphous  layer 22 

ll 4c~"~ 'i3 Ol=at~- ) gl/3CA (5v-2,/3(3v-1) (35)  

a = (4+ '~ -1 i3  
- -  AT1/3 (-'(1 - 4v)/3(3v- 1) (36) 
a2----n¢ + 1  k ~ 2 )  " ' A  ~"A 

These relationships coincide at CA = 1 with the limiting 
case (N-+ oo) of the more detailed analysis in ref. 21. 

Equations (34)-(36) determine the molecular-weight 
dependence of characteristics of the lamellar mesophase 
with one crystalline block. They show that, in contrast 
to the case of block copolymers with two amorphous 
blocks, equations (7)-(9), the thickness of the amorphous 
layer in semicrystalline block copolymers and the specific 
a r e a  cr/a 2 are determined only by the length of the 
amorphous block N A (at any ratios of components A 
and B). 

The dependence (36) is of particular interest. According 
to it, the number of folds of the crystalline component 
B is independent of N, and is determined only by the 
characteristics of the amorphous layer: the block length 
N k and the solvent content (1 -  CA). 

According to experimental data 22 for structures formed 
by polyoxyethylene-polystyrene (POE-PS) and poly- 
oxyethylene-polybutadiene (POE-PB) copolymers, the 
number of folds of POE is actually independent of Na 
and increases with N A in both the absence and the 
presence of the solvent in the system (Figure 9). 

However, the experimental dependence n c ~ N  °'6 is 
found to be slightly stronger than according to equation 
(36), and at MB/MA > 2 the dependence of n¢ on NB also 
appears. It is possible that complete equilibrium is not 
attained in the structures being formed. 

The increase in swelling (1 -  CA) of the amorphous 
block, just as the increase in NA, should lead us to an 
increase in fold number and the compression of the 
crystalline unswelling block. 

The dependence of n¢ on CA is described by a power 
dependence nc~ CA ~x with the exponent: 

( - 7 / 1 2  x=  + 

~x = ~(- 2/3 x = mf, 0 
(37) 

The experimental dependence 22 of the specific area 
tr=a2(n¢+l) on the volume fraction of the solvent 
(1- CA) is shown in Figure 10. The tangent of the slope 
angle of the straight line passing through the experimental 
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Figure 10 Dependence of specific area a on solvent concentration in 
the amorphous layer 

points is 0.6, in good agreement with the theoretical 
evaluations in equation (37). 

The complete period of the lamella: 

(4dp"] 1/3N2/3 H, =Rl+Dl=a\~yj  

x(ex(5V-2)/3i3v-l)-k-N~B e(A4V-1)/3(3v-l' ) (38) 
NA 

is determined by the sum of terms differing in the sign 
of the concentration dependence: increase in CA leads to 
increase in R 1 and decrease in D 1. Hence, the behaviour 
of Ha is determined by the sign of the derivative: 

O~HI-~ CA NB 4v-- 1 1 (39) 
0C A N A 5 v - 2  

For the sample investigated in ref. 22 with MaIM A = 1.5 
and CA<0.45, the value of H 1 should increase with 
decreasing CA (~H1/~CA <0),  which is actually observed 
experimentally. It is of interest that in the range of weak 
dilutions the jump-like character of changes in the lamella 
parameters is very distinct. This character reflects the 
fact that nc is an integer, which is particularly pronounced 
at low nc values. In this case in the CA ranges in which 
n¢=const,  the value of H 1 increases with decreasing CA 
as a result of the swelling of the amorphous block at a 
constant width of the crystalline layer. 

Mutual influence of blocks 
As has been shown above using a number of examples, 

the superstructures of block copolymers exhibit an 
interesting effect of the mutual influence of blocks of each 
component on the dimensions of structural elements of 
the other component. 

Thus, in the section 'Superstructures of three-block 
copolymers', a transition from a two-block AB to a 
three-block ABA copolymer was considered. In this case 
the size Mn of the component B did not change but only 
the total amount of the component A increased by a 
factor 2. However, this resulted not only in the increase 
in the size of the structural element A (thickness D 1 of 
the lamella) but also in the decrease in the thickness of 

the element B. A similar result has also been observed 
in the concentration dependences of structural parameters: 
the swelling of one element in a selective solvent always 
leads not only to an increase in the size of this element 
but also to a decrease in that of the other unswelling 
element (see section on 'Concentration dependence o f . . .  
the superstructures'). 

The reason fo,- the mutual influence of block copolymer 
components is due to the fact that the specific area a of 
the boundary of microphases in the superstructure is 
determined as a result of a compromise between two 
opposite trends: surface tension tends to decrease a, 
whereas mutual side repulsion of blocks due to their 
resistance to the increase in grafting density, I/a, tends 
to increase a. The latter effect increases with the size of 
blocks of each component (increase in molecular weight 
and stiffness) and with increasing degree of their swelling. 
This increase leads to an increase in a, which in turn, 
taking into account the constant volume of a structural 
element per block of the invariable component, leads to 
a decrease in the thickness of this element. 

Hence, the size of each element of the superstructure 
depends not only on the molecular characteristics of its 
own blocks but also on those of blocks forming the other 
element. 

The rearrangement of the morphology of the entire 
system during selective swelling of one block considered 
in the section on 'Morphology of block copo lymers . . . '  is 
also an example of the mutual influence of blocks. 

Finally, one of the most outstanding manifestations of 
the mutual influence of blocks has been considered in 
the section on 'Lamellar supers t ructure . . . ' .  It was shown 
in this section that the number of chain folds of the 
crystalline component B is independent of M s but is 
determined by the characteristics of the amorphous 
component: the block length MA and the solvent content 
( 1 -  CA). This result was obtained here in terms of the 
equilibrium theory of block copolymers for which the 
semicrystalline structure with chain folds in the crystalline 
domain corresponds to the equilibrium state of the 
system. The authors believe, however, that the conclusion 
that the molecular weight (or the effective molecular 
volume) of the amorphous layer determines the fold 
number of the crystalline layer is of a more general 
character. It may be extended to the semicrystalline 
structures of homopolymers, the very existence of which 
is due to kinetic effects. 

CONCLUSIONS 

In this paper and in part 11 we have developed a general 
theory of supermolecular structures in two-block AB 
copolymer-solvent systems, which is mainly based on 
simple scaling concepts. 

The supermolecular structures considered here, first 
the supercrystalline structures swelling in the solvent, are 
very interesting formations. They combine the existence 
of long-range supercrystalline order in the arrangement 
of A and B structural elements ~ 100 A in size and the 
existence of the amorphous state within the elements 
of both types or one type. This regular microphase 
separation is a direct consequence of the chemical 
structure of two- (or three-) block copolymers in which 
the blocks are sufficiently large for the manifestation 
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of polymer properties. Their incompatibility ensures 
phase separation, their fixation in one chain limits the 
transverse dimensions of each phase and moderate 
molecular-weight distribution determines the regular 
spatial arrangement of structural elements. 

The scaling approach used in this work made it 
possible to establish several relationships between the 
morphology and characteristics of supermolecular struc- 
tures on the one hand and the parameters of macro- 
molecules, the content and properties of the solvent on 
the other. Moreover,  it was possible to consider in a 
unified manner  the behaviour of block copolymers in a 
wide range of concentrations varying from micellar 
solutions and superstructures with different contents of 
both the selective and the non-selective solvent to its 
complete absence. 

This theory permitted the interpretation of a large 
number of experimental data accumulated in the literature 
and we hope that it may stimulate further investigations. 
We mean, first, the conformation-concentrat ion diagram 
of the morphology of the superstructure constructed in 
this work. According to this diagram, the change in the 
concentration of the selective solvent can lead to the 
rearrangement of the morphology of the system. 

To avoid misunderstanding, it should be emphasized 
that in this paper  we restricted ourselves to the study of 
ordered supercrystalline structures under the condition 
distant from the point of transition to this ordered state. 
For  this reason, the suggestion about  the thin interphase 
layer, the properties of which do not depend on the 
molecular weight of individual blocks (see ref. 1), was 
chosen as one of the starting points of this work. The 
theory of the melt-superstructure transition has been 
considered in refs. 23 and 24. 

In this paper we restricted ourselves to the consider- 
ation of traditional superstructures with planar lamellae, 
cylinders and spheres of one of the components.  Recently 
it has been reported that a new type of structure has 
been detected: a bitetrahedral structure formed by 
star-branched block copolymers 2s. In a forthcoming 
paper  (see also ref. 26) the approach developed here 
and the results of the theory of star-branched macro- 
molecules 27-29 will be used for the theoretical analysis 
of these structures. 
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N O T E  A D D E D  IN P R O O F  

The scaling analysis scheme used in this paper  assumes 
the determination of system characteristics in the form 
of power asymptotics. The conditions of transition from 
one asymptotic dependence to the other are determined 
by a crossover of the corresponding asymptotics. Thus, 
the boundaries of regions in Figure 6 were obtained by 
crossover of the corresponding free energies (equation 
(29)). 

It should be noted, however, that this approach 
inevitably leads to some simplification of the picture 
obtained. Thus, the boundaries between regions I, II, III ,  
I '  and II ' ,  shown in Figure 6 by solid lines, are actually 
two-phase corridors. These two-phase regions are typical 
for first-order concentration phase transitions in polymer 
solutions. A more detailed analysis shows that the widths 
of two-phase corridors are proportional  to N -2/3, and 
hence are small at N>>I. Consequently, these regions 
may be approximated by lines, as in Figure 6. 
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